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~ s t r a c t  

Two physical mechanisms normally prevent the positive active material in a lead/add battery 
from reacting. One of these mechanisms is the change in plate conductivity that occurs 
when conductive active material is converted to nonconductive lead sulfate. The other 
mechanism is electrolyte diffusion. This paper presents a model that combines the effect 
of both these mechanisms on the discharge capacity of a lead/acid battery for constant 
current discharge. The model characterizes the electrolyte diffusion in a cell with two 
equations. A finite difference equation characterizes the diffusion process between the 
plates, and a McLaurin series approximate the electrolyte diffusion inside the positive 
plate. The electrolyte stored inside the plate, before the discharge begins, also contributes 
to the cell's capacity and is included in the model. The critical volume fraction characterizes 
the conductivity of the positive active material. A sharp decrease in conductivity occurs 
when the amount of active material, that has reacted in a plate, reaches this fraction. A 
computer program combines these diffusion and conductivity models into one comprehensive 
model. The simulated data from this model are compared with experimental data previously 
reported [1]. 

Introduction 

Several mechanisms can limit the capacity of  a lead/acid battery. The diffusion 
of  the sulfate ion into the positive plate of  the battery is an important capacity-limiting 
mechanism as previously discussed by other authors [2-4]. This effect is most noticeable 
during medium to high discharge rates. At  low discharge rates, electrical conductivity 
of  the positive active material limits the reaction [5-7]. To better understand these 
limitations, a computer  model that simultaneously includes the effect of  both these 
mechanisms on the discharge capacity of  a lead/acid battery was developed. 

Several researchers [3, 4, 8-10] have previously modeled diffusion in lead/acid 
batteries. Stein [3] and Horv~th et al. [4] studied the electrolyte diffusion using Fiek's 
laws of  diffusion. Papazov [8] used mass-transport theories to model the movement 
of  the reactants in a cell. Maja and Penazzi [9] modeled the sealed gas recombinant 
battery by analyzing the gas-material balance with in the cell. Ekdunge and Simonson 
[10] modeled the kinetics of  the electrode process, the ionic mass transport and the 
effects of structural changes. The model presented here uses Fick's first and second 
laws of  diffusion to model the diffusion of  the acid between the plates. The concentration 
of  the acid inside the plate is approximated by a second order  MacLaurin series 
expansion. 
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Researchers [4, 5, 7, 11-14] have also developed current distribution and conductivity 
models for the lead/acid battery. Simonsson [7] evaluated the current distr~ution of 
the battery during discharge. Vaaler et al. [12] modeled the battery grid and active 
mass using Kirchoff's equations. Metzendorf [5], Pohl and Schendler [11], and Horv~th 
et al. [4] modeled the battery using electrical conductivity as the limiting mechanism. 
Maja et al. [13] have modeled the grid-active material, and the electrolyte as a series 
of resistors, and Winsel et al. [14] modeled the resistance between the active material 
particles. 

Two authors of this paper, Edwards and Appel [15], had previously modeled the 
conductivity of the positive and negative active material. The conductivity of the active 
material changes dramatically after a critical ratio of material has reacted. After this 
ratio is reached, the paste becomes nonconductive and the reaction stops. The critical 
volume ratio, as defined by Metzendorf [5], is therefore an important parameter in 
this paper. The two mechanisms that limit capacity, electrolyte diffusion and active- 
material conductivity, were combined so that both the high- and low-rate battery 
capacities could be predicted. 

The model will generate both voltage versus discharge-time plots and capacity 
curves. A capacity curve shows the percent of the positive active mass that reacts 
as a function of the discharge rate. The computer generated voltage versus time 
plots and the capacity curves are compared with the experimental data previously 
reported [1]. 

The model presented in this paper can be used to predict and help understand 
the behavior of plates with active material additives. In a companion paper [16], this 
model will be used to simulate the effects that hollow borosilicate glass mierospheres 
have on the positive active mass. 

Model development 

The model solves for the acid concentration between the plates with a finite 
difference solution of Fick's laws. In the solution, the concentration gradients at the 
surface of both plates are assumed to be constant. These boundary conditions are 
valid for constant current discharges. The solution of the finite difference equations 
provides the acid concentration at the plate's surface. 

A MacLaurin series expansion estimates the acid concentration inside the plate 
where the reaction occurs. The expansion uses the acid concentration and its spatial 
derivatives at the plate's surface to develop an expression for the acid concentration 
as a function of distance into the plate. After the discharge into the plate where the 
reaction occurs, called the reaction distance, is determined, the acid concentration at 
the reaction distance can be found and the cell voltage calculated. 

The reaction discharge depends on a number of factors. These factors include 
the amount of active material that had previously reacted during a discharge, the 
critical volume fraction, and the amount of electrolyte stored in the plates. In subsequent 
sections these factors are combined to estimate the reaction distance. After the acid 
concentration at the reaction distance is established, voltage versus time and capacity 
curves can be calculated. 

Modeling the concentration between the plates 
Fick's first law of diffusion can be written: 

acn 
J= -D - -  (1) 
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where J is the flux of  the ions past a plane, D the steady-state diffusion rate, m the 
ion concentration and x the distance in the ion movement direction. This equation 
makes the assumptions that the ions diffuse only in a linear direction and that the 
diffusion rate is constant and independent of  ion concentration. The steady-state 
diffusion rate at 25 *C was reported by Bode [2] as 3 .56×10 -9 m2/s (2.081×10 -9 
in2/s). 

The spatial and transient distribution of  the acid concentration follows Fick's 
second law of  diffusion: 

~ m  
~¢ = D  ik---- 5- (2) 

Both forms of  Fick's laws assume that the ion migration is strictly due to a concentration 
gradient. The ion concentration between the plates is determined for both position 
and time by using a finite difference solution to Fick's second law of  diffusion. The 
Crank-Nicholson [17] method provides an implicit finite difference technique which 
is second order accurate with both time and space. 

The Crank-Nicholson method forms a tridiagonal matrix using the approximation: 

~m 1 [m~+l--2mJk+mik_l i + 1  ~ + 1 - -  j + l  \ m k + l - -  l . .gn'k " " "l- m k _ l ~ 

~j~2 - -  2 [ (Ax) 2 + (Ax) 2 ] (3) 

where j represents the time counter and k the x position coun te r  This equation along 
with the approximation: 

am m~+ l-m~ 
-- (4 )  

at At 

can be used to create a Ja'cobian matrix solution to eqn. (2). The general equations 
in the Jacobian will have the form: 

- hm~+11 + 2(1 + A)m{ +1 -- Am{+~ =/~/'lJk_ 1 + 2(1 -- A)mJk + hmJk+ 1 (5) 

where A = D  Am/Ax 2. 
For  a constant current discharge, the concentration gradient at the boundary is 

constant and known. For the left boundary node, which is the negative plate, 
eqn. (5) can be written as: 

2(1 + A)m~ +a - Am J2 +a = Af0(t j) + 2(1 - A)m~ + Am/2 + Af0(t j+ 1) (6) 

and for the right boundary node, which is the positive plate, as: 

- Am~a+_11 + 2(1  + A ) m ~  + 1 = Afn + l ( t  j) + 2(1  - X ) m ~  + , ~ + 1  "q- ,~fB+ 1( tj+ 1) (7 )  

The subscript B represents the node at the fight boundary. 
The concentration gradients at the negative and positive plates are the boundary 

conditions for eqns. (6) and (7), respectively. Stein [3] used Fick's first law (eqn. (1)) 
to develop an expression for these boundary conditions as: 

dm i OH 
-~-  -- D at/ (8) 

where i represents the current density, and aH/aq is the change in acid concentration 
per Coulomb of  charge transport. The values reported by Stein [3] for aH/aq at the 
positive plate is - 7 . 1 5  × 10 -6 mol/C and 1.97 × 10 -6 mol/C for the negative plate. 
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The system was modeled as forty nodes between the positive and negative plates. 
Where  the plates were modeled as 0.1 inches apart (approximately the thickness of  
the separator) and a time step of  one second was used. A one second time step was 
chosen to ensure a stable solution. The resulting 40 by 40 Jacobian matrix is then: 

[C][~] = [K] (9) 

where m is the concentration solution, C the Jacobian matrix, and K the concentration 
matrix from the previous time step. 

Solutions of  eqn. (9) are plotted as a function of  the position between the plates. 
An  example of  a set of  data from a representative discharge is given in Fig. 1. The  
dotted lines at the left and right side of  this Fig. are the positions of  the negative 
and the positive plate, respectively. Note that the right side of  the Fig. has a steeper 
slope, caused by water being produced at the positive plate. The water generation 
dilutes the acid at the boundary creating the slope change. Figure 1 represents a 
medium discharge rate (i.e. 0.06 A/g of  positive active material), and shows only one 
solution for every 500 time steps. 

The  solution discussed so far only represents the concentration between the plates. 
Equation (9) assumes that the reaction occurs on the surface of the plates. It does 
not account for the diffusion of  the acid into the plate where the reaction actually 
occurs. Concentrations inside the plate will be lower than on the surface and this 
difference must be included in the analysis. Figure 1 shows a projection of  the 
concentration into the positive plate. This projection is shown as a series of  lines 
located to the right of  the second dotted line. A MacLaurin series expansion is used 
to approximate the concentration where the reaction occurs and will be discussed in 
the next section. 

Modeling the concentration within the plate 
The concentration within the positive plate for constant current discharges is 

approximated by a MacLaurin series expansion. This expansion provides the molar  
concentration, m, at some distance, xp, from the plate's edge, and is given by the 
following equation: 
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Fig. 1. Concentration vs. distance at different times of a discharge (0.06 AYg discharge). 
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m ,=m +xp + 21 ~ 2  + . . .  (10) 
Xp--0 + Xp--0 + P Xp--0 + 

The distance xp has been nondimensionalized relative to half the plate thickness. 
Therefore, the value of  Xp will be one at the center of  the plate and zero at the 
surface of  the plate. The first and second spatial derivatives of  the concentration curve 
are used in this approximation while the higher order terms are neglected. It  should 
be noted that the concentration and derivatives used in eqn. (10) are evaluated to 
the right of  the discontinuity that exists at the positive plate's boundary. However, 
these terms can be derived from the boundary conditions that exist to the left of  this 
discontinuity. 

The first term, which is the concentration at Xp=0 +, must be the same on both 
the left and right side of  the boundary. If  this condition were not true, a step change 
in concentration would exist and cause an infinite flow of  ions, thereby eliminating 
any difference in concentration. The concentration mB at the positive plate's surface, 
which was previously determined using the finite difference equation (eqn. (9)), 
will therefore be equal to the concentration m~p-0+ on the other side of  the dis- 
continuity. 

In eqn. (1), the flux of  ions, J, moving across the boundary must be the same 
from mass conservation. This results in the condition that: 

I D am - yLp_0= rip-- J =  - I,p-0+ (11) 

The first derivatives of  the concentration on either side of  the boundary are therefore 
proportional. The proportionality constant is the ratio of  diffusion constants, where 
D is the diffusion rate in the electrolyte and Dp is the average diffusion rate in the 
plate. 

Bode [2] reports that the average diffusion rate within the plates can be approximated 
by: 

D. =D e (12) 
"r 

where p is the porosity and ~" the tortuosity. For  our evaluation, the tortuosity of  the 
plate was set equal to one. The first derivative in eqn. (10) is then equal to the first 
derivative evaluated to the left of  the boundary multiplied by the ratio of  the diffusion 
constants, D/Dp. Since for a constant current discharge, the first derivative located to 
the left of  the discontinuity is constant and known, the second term in eqn. (10) is: 

xp - 0 +  D p  x p - 0 -  

The second spacial derivatives on both sides of  the boundary can also be related. 
The change in concentration with respect to time must be the same on both sides of  
the boundary or else, after a finite time, a step change in concentration would exist 
across the boundary. Using eqn (2), the second spatial derivatives across the boundary 
a r e ;  

~n = D  ~ m  / - D  i~ml (14a) 
¥ ~ - p ~ i  

P Ixp--O- P Izp--O+ 
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or, 

i~m[ D i~m[ (14b) 

P x p - - 0 +  

Although the second spatial derivative to the left of the boundary can be calculated 
each time step, for this simplified analysis only a rough estimate is used. We approximate 
the second spatial derivative to the left of the boundary by the following equation: 

-:1 I 
I (15) 

"~p2 Xp_0_ Xd 

where Xd is half the linear distance between the positive and negative plates. 
Figure 1 shows that the first derivative is approximately zero at the center of the cell. 
The first derivative at the boundary is constant and known, as previously discussed. 
Therefore, the second derivative to the left of the boundary is approximated as the 
first derivative divided by one half the distance between the plates: 

~2 - -  (16a) 
Xp-0- Xd xp-0- 

and, 

i~m[ D~m[ D l_.~p I (16b) 
~117 2 Dp ~ ----" Dp Xd 

P X p - - 0  + P x p - - 0 -  x p - 0 -  

As a check on the accuracy of the above estimate, the value of the second derivative 
estimated in eqn. (16) and the numerically evaluated second derivative were plotted 
against time during a representative discharge, see Fig. 2. The derivative of concentration 
with respect to time is calculated at each time step. As seen in Fig. 2, the second 
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Fig. 2. The second spatial derivative of the concentration as a function of time. 
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derivative estimated from eqn. (15) provides a rough estimate to the numerically 
calculated second derivative. 

After the above values are substituted into eqn. (10), the estimate for electrolyte 
as a function of the nondimensional distance, Xp, is: 

m(xv)=mB+x p ~ (  ~ ) 1 +  ~.I J ( ~ ) [  + . . .  (17) 
B ~ B 

where all quantities have been previously defined. 

Estimating the reaction distance 
Equation (10) provides an estimate for the concentration within the plate as a 

function of the variable Xp- The distance into the plate where the reaction is occurring 
will be called the reaction distance XR. This distance depends on the critical volume 
fraction, V¢, which is the amount of material that can react before conductivity is lost 
[5]. In previous work [15], a computer model estimated the critical volume fraction 
to be about 60% for positive lead/acid battery plates having no additives. 

The reaction distance, XR, is determined from the discharged All and the critical 
volume fraction as shown below: 

It 
XR = - -  (18) 

vocs 

where t is the total elapsed time, I the discharge current and Cs the stoichiometric 
capacity of the cell. Equation (18) assumes that the reaction starts on the edge of 
the plate and reacts all of the material that can be reacted (i.e., 60% of the material 
available for reaction) until the cell voltage drops to 1.75 V. The maximum capacity 
that a cell can produce is equal to Vc times the stoichiometric capacity, Cs, of the 
positive active material in the cell. This maximum occurs when the reaction distance 
reaches the center of the plate, or XR has a value of one. 

Modeling electrolyte stored in the plate 
The electrolyte ions stored in the plates do not need to diffuse to react with the 

active material. These stored ions allow the reaction to proceed independent of the 
ions that diffuse into the plate. To account for these stored ions, an adjustment will 
be added to the elapsed time for each time step. The elapsed time adjustment, At, 
is given by the following equation: 

At= AmVpeF (19) 
I 

where Am is the change in concentration where the reaction occurs from one time 
step to the next. The pore volume, Vp, is given for a specific type of plate, F is 
Faraday's constant and e the number of electrons that participate in the reaction. 

Figure 3 shows the percent of positive active material as a function of distance 
into the plate. Two regions are shown in this Fig. The top region shows the material 
that reacts with the acid diffusing into the plate from the electrolyte stored between 
the plates. This diffusion is governed by eqn. (17) described in the previous section. 
The bottom region, containing the horizontal lines, shows the material that reacts 
with the acid stored in the pores of the plate. Each line represents a time step and 
the amount of material that reacts is determined by multiplying the discharge current 
by the time correction, eqn. (19). 

The dotted line in Fig. 3 shows what a fully-discharged plate would look like. 
This shape is similar to the lead sulfate distribution patterns found by X-ray diffraction 
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Fig.  3. Percent of reacted lead dioxide as a function of location in the plate. 

work on discharged plates  [2]. The  electrolyte is unable  to diffuse fast enough to keep 
up with the  rate  of  deplet ion in the center  of  the plate.  The  mater ia l  on the outs ide 
of  the plate  will therefore  have a greater  percent  of  lead sulfate than the mater ia l  
in the center  of  the plate.  

Vol tage  versus  t i m e  curves  
The actual concentrat ion gradient  of  the acid in a real  bat tery is difficult to 

measure  but  bat tery voltage can be easily found during a discharge. The  Nernst  
equation is used to convert the molar  concentrat ion of  the acid to the electrochemical  
potent ial  as shown below: 

R T  
V= V0 + ~-~ ln([H + ]3[HSO4-1) - Va~,p (20) 

where V0 is the s tandard  electrochemical  potent ia l  relative to a hydrogen electrode,  
R the universal gas constant ,  T the temperature ,  n is the number  of  e lectron par t ic ipat ing 
in the react ion and F the Faraday  constant.  (The Varop term will be discussed in the  
next paragraph.)  

The  internal  resistance of the bat tery and o ther  resistance terms associated with 
the charging station are of course not accounted for in the  Nernst  equation.  The  total  
resistance was es t imated from experimental  data.  To find the total  resistance of  a 
cell, the initial voltage of  the  cell during discharge was recorded for various discharge 
rates. The  voltages were p lot ted  against  the current  and a l inear  least  squares best  
fit line was calculated.  Figure 4 gives exper imental  da ta  for cell voltage as a function 
of  current.  A best  fit l inear  equat ion to the experimental  data,  eqn. (21), is also shown 
in the  Fig.: 

Va~,p = - 0 . 2 6 0 9 1 +  2.138 (21) 

The  y- intercept  point  of  this line represents  the s tandard  electrochemical  potent ia l  of  
the cell being tested.  This potent ia l  depends  on the initial concentrat ion.  The  model  
assumes an initial concentrat ion of  5.04 mol/l, which corresponds to 2.14 V. Therefore  
the y- intercept  is used to correct  for any difference between the tes ted cell and this 
value. Also, the slope of  the line is the combined resistance of  the cell and the testing 
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Fig. 5. Cell voltage vs. time (0.06 AJg discharge). 

station. This voltage drop is then subtracted from the voltage determined by the Nernst 
equation. 

Computer data 
The model provides the voltage as a function of  time for a simulated cell during 

constant current discharge. The time includes the time adjustment for the electrolyte 
stored in the plate that reacts, This computer  data plus the experimental results from 
actual plates are shown in Fig. 5 and will be discussed in greater detail in the next 
section. 

During the testing of  the standard cells, a cutoff voltage of  1.75 V was used. 
Therefore, the model used this same restriction on the cell voltage. A problem arises 
from using a cutoff voltage of  1.75 V at high discharge rates (greater than 0.08 A g), 
since the resistance voltage drop limits the capacity of  the battery. At  these current 
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levels, the resistive voltage drop becomes so high that the cutoff voltage is reached 
before even the electrolyte stored in the plate can react. 

The capacity of plates investigated in this paper are reported as a percent of 
their stoichiometric capacity, the theoretical number of All in the plate. To find the 
capacity of the positive plate being modeled, the total time is multiplied by the 
discharge current and divided by the stoichiometric capacity of the modeled plate. 
The total time is equal to the sum of time steps plus the time adjustments used for 
the stored electrolyte. The modeled capacity will be compared with experimental data 
in the next section. 

Comparison with experimental data 

Figure 5 shows a computer-generated voltage versus time curve with several 
experimental curves for the same constant current discharge. The experimental data 
come from previous work done by Edwards and Srikanth [1]. The voltage versus time 
plots shown in Fig. 5 are typical and illustrate some of the difficulties with the model. 

The computer-generated curve's initial voltage is lower than the average initial 
voltage of the experimental curves. The discrepancy between the initial voltage used 
by the model and the experimental values can be attributed to a couple of factors. 
The initial concentration and resistance parameters used in the model are average 
values determined from experimental data for a number of different discharge rates. 
These parameters will therefore be in error for at least some of the discharges. The 
variation in the initial concentration of the experimental cells would also contribute 
to inaccuracies between the model's prediction and the experimental data. If the cells 
were discharged immediately after a charge while the electrolyte concentration in the 
plate was high, then the initial voltage for the experimental cells would be higher 
than that predicted by the model. 

In Fig. 6, the voltage versus time curves generated by the model, as well as the 
experimental curves, for five different discharge rates are shown. To simplify the Fig., 
only one experimental curve is given for each computer-generated curve. Figure 6 
shows that the model's voltage versus time plots match the experimental data at the 
beginning and the end of the discharge relatively well. However, the shape of the 
experimental curves differ significantly from the curves predicted by the model. This 
is especially true for the low discharge rates. 
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Fig. 6. C o m b i n e d  vo l tage  vs. t ime  curves for var ious  d i scharge  rates.  
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We believe the method used to model the stored electrolyte in the positive plate 
is responsible for the discrepancy between the predicted and measured voltage. The 
model assumes that all of the acid contained in the plate's pores react to the same 
concentration as occurs at the reaction distance, XR. In an actual plate, the stored 
electrolyte would have some concentration gradient and more of it would react earlier 
in the discharge than the model presently predicts. The model would therefore predict 
a lower voltage during the discharge than what the data show. Our model would need 
to be further developed to account for the gradient in the stored electrolyte to correct 
this problem. 

Our treatment of the stored electrolyte also causes another problem. During the 
time-adjustment period, when the electrolyte in the plate is reacting, the concentration 
gradient between the plates does not change. This simplifying assumption will therefore 
cause the model to underpredict the electrolyte concentration in the positive plate. 
The cell voltage predicted by the model will be less than the measured voltage due 
to this time adjustment method of dealing with the stored electrolyte. 

Although our treatment of the stored electrolyte inside the positive plate causes 
the model to underpredict the voltage over most of the discharge, the model's end- 
of-discharge voltage is relatively accurate. Of  course, at the end of discharge, most 
of the electrolyte in the positive plate has reacted so that it no longer has much of 
an effect on the voltage. The electrolyte diffusing into the positive plate will determine 
the voltage at the end of discharge. The assumptions used to model the diffusion of 
electrolyte into the positive plate appear to work relatively well. 

The more important use of this model will be in determining the capacity of new 
plate designs. As seen in Fig. 7, the numerically determined capacity of the modeled 
plates compares favorably with the experimental data reported by Edwards and Srikanth 
[1]. Further work is needed to verify the model at the more extreme discharge rates. 

In a companion paper [16], this model is used to predict the behavior of plates 
having additives. The plates that are modeled contain various amounts of hollow, 
borosilicate glass microspheres. These spheres are nonconducting and lower the critical 
volume fraction, yet they also increase the amount of acid stored in the positive plate 
relative to the amount of active material. 
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Conclusions 

The model  presented  in this pape r  combines diffusion and conductivity pa ramete r s  
to character ize  constant  current  discharges for lead/acid bat ter ies .  Porosity, density of  
active material ,  resistance of  the cell, initial concentrat ion of the  acid and critical 
volume fraction are the parameters  required by this model  to predict  cell behavior.  
The  model  uses these parameters  to est imate the acid concentra t ion where the react ion 
occurs in the  plate.  This concentrat ion is then used to calculate cell voltage as a 
function of  t ime and to de termine  cell capacity. Al though the model  is relatively simple 
and provides reasonable est imates for a cell 's capacity, the shape of  the  voltage versus 
t ime curves predic ted  by the model  are different from the exper imental  data.  This 
difference is a result  of  how the s tored electrolyte in the positive plate  is modeled.  
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